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SUMMARY 
Wind-induced vibrations are typically the critical design criterion for slender line-like structures. This work presents 
a data-driven model of the aerodynamic forces acting on bluff bodies based on Gaussian Process (GP) as a reverse-
engineering machine learning method. The training input is designed as random harmonic motion consisting of vertical 
and rotational displacements. Once trained, the model is employed to predict both nonlinear dynamic forces and 
predict structural response during post-flutter behaviour. Applications include two benchmark bridge decks based on 
Computational Fluid Dynamics (CFD) data.  
 
Keywords: Gaussian Processes, Data-driven, Bridge Aerodynamics, Aeroelasticity, Flutter. 
 
 
1. INTRODUCTION 
The semi-analytical models of the aerodynamic forces acting on bluff bodies such as bridge decks 
are still standard design practice. These models are however limited in their predictive capabilities 
for large-amplitude oscillations and strong turbulent winds; therefore, they are not able to capture 
strong aerodynamic nonlinear effects in the forces, such as high-order harmonics or simulate Limit 
Cycle Oscillations (LCOs). To tackle this, data-driven models based on e.g. Artificial Neural 
Network (ANN) have recently gained considerable attention (cf., e.g. Wu and Kareem, 2011; 
Abbas et al., 2020). These reduced-order models are initially trained based on data from CFD or 
experiments and can then be used to predict the aerodynamic forces or response. The wide 
mathematical properties of the data-driven models make them capable of capturing nonlinear 
aerodynamic phenomena (e.g. nonlinearity or non-stationarity) for a fraction of the computational 
time compared to the Computational Fluid Dynamics (CFD) models.  
 
Alternatively to ANN for data-driven modelling, Gaussian Processes (GPs) (cf. Rasmussen and 
Williams, 2006) have enjoyed success as a machine learning method due to their non-parametric 
nature and ability to inherently consider measurement uncertainty. This study presents recent 
advancements in data-driven modelling of aerodynamic forces using GPs (cf. Kavrakov et al. 
(2022)). The model is completely non-dimensional, taking the effective angle of attack as input 
and having fluctuating lift and moment coefficients as output. The modelling framework is 
employed for two bridge decks to predict the nonlinear self-excited forces, critical flutter speed 
and post-flutter behaviour, i.e. LCOs. 
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2. GAUSSIAN PROCESS NONLINEAR AERODYNAMIC MODEL 
Consider the wind-structure interaction system shown in Fig.1. The aerodynamic force model is 
constructed as a finite impulse response with exogenous input and additive independent identically 
distributed noise. For example, the lift force coefficient 𝐶𝐶𝐿𝐿𝐿𝐿 at discrete time-step 𝑖𝑖 is formulated 
as: 
 

𝐶𝐶𝐿𝐿𝐿𝐿 = 𝑓𝑓𝐿𝐿(𝜶𝜶𝐿𝐿) + 𝜖𝜖𝐿𝐿 = 𝑓𝑓𝐿𝐿�𝛼𝛼ℎ,𝐿𝐿
′ ,𝛼𝛼𝑎𝑎,𝐿𝐿

′ ,𝛼𝛼𝑎𝑎,𝐿𝐿,𝛼𝛼ℎ,𝐿𝐿,𝛼𝛼𝑎𝑎,𝐿𝐿,𝛼𝛼ℎ,𝐿𝐿−1,,𝛼𝛼𝑎𝑎,𝐿𝐿−1, … ,𝛼𝛼ℎ,𝐿𝐿−𝑆𝑆,𝛼𝛼𝑎𝑎,𝐿𝐿−𝑆𝑆� + 𝜖𝜖𝐿𝐿,   (1) 
where the input vector 𝜶𝜶𝐿𝐿  is constituted from the angles based on the vertical 𝛼𝛼ℎ =
atan (ℎ′/𝐵𝐵) and rotational motion 𝛼𝛼𝑎𝑎 = 𝛼𝛼. The number of lag terms is denoted as 𝑆𝑆 and 
the derivative w.r.t. non-dimensional time 𝜏𝜏 = 𝑡𝑡𝑡𝑡/𝐵𝐵 is denoted with a prime. 

 

 
Figure 1. Wind-structure interaction system (left). Graphical representation of the GP model (right). 

 

 

The nonlinear function 𝑓𝑓𝐿𝐿 is a GP 𝑓𝑓 = 𝒢𝒢𝒢𝒢�𝑚𝑚𝑓𝑓 ,𝑘𝑘𝐿𝐿�, with a covariance function 𝑘𝑘 = 𝑘𝑘(𝜶𝜶𝐿𝐿,𝜶𝜶𝑗𝑗;𝜽𝜽) 
based on the input 𝜶𝜶 and hyperparameters 𝜽𝜽 (which may include parameters from 𝑚𝑚𝑓𝑓), with 
Gaussian noise 𝜀𝜀 = 𝒩𝒩(0,𝜎𝜎𝐿𝐿2). We use an exponential kernel with automatic relevance detection 
to construct the covariance matrix 𝑲𝑲𝐿𝐿𝐿𝐿 since it is infinitely differentiable, and particularly useful 
for dynamical problems (cf. Rasmussen and Williams, 2006).  
 
Learning the nonlinear function, i.e. hyperparameters 𝜽𝜽  is through minimization of the log-
likelihood. Once these are learn, the predictive distribution at prediction points 𝜶𝜶𝐿𝐿∗ is 
𝑝𝑝( 𝐟𝐟L∗|𝜶𝜶∗,𝑪𝑪𝐿𝐿,𝜶𝜶;𝜽𝜽)~𝑁𝑁(𝑲𝑲𝐿𝐿𝐿𝐿∗

𝑇𝑇 (𝑲𝑲𝐿𝐿 + 𝜎𝜎𝐿𝐿2𝑰𝑰)−1(𝑪𝑪𝐿𝐿 −𝒎𝒎𝑓𝑓),𝑲𝑲𝐿𝐿∗ − 𝑲𝑲𝐿𝐿𝐿𝐿∗
𝑇𝑇 (𝑲𝑲𝐿𝐿 + 𝜎𝜎𝐿𝐿2𝑰𝑰)−1𝑲𝑲𝐿𝐿𝐿𝐿∗),        (4) 

where 𝑲𝑲𝐿𝐿𝐿𝐿∗ and 𝑲𝑲𝐿𝐿∗  are constructed based on the prediction points. Similarly, the moment 
coefficient can be found.  
 
The prediction framework is shown in the figure below: 
 

 
Figure 2. Prediction framework for the aerodynamic forces using a GP-NFIR model. Gray box - model; white 

box - input/output. The dashed line indicates if a dynamic model (aeroelastic analysis) is used for prediction. 

 



3. APPLICATION 
The methodology is applied to two bridge decks based on CFD data: the streamlined Great Belt 
Bridge deck and bluff H-shaped Tacoma-like section. The sections are shown below.  

 
Figure 3. Streamlined Great Belt Deck (left); H-Shaped Tacoma-like Bluff Deck (right) 

 
The input training motion consists of two separate signals stacked together with standard 
deviations of σαh=σαa=2.5 and 15 deg for the streamlined deck (Fig. 4, top), and 𝜎𝜎𝛼𝛼ℎ = 𝜎𝜎𝛼𝛼𝑎𝑎=1 
and 8 deg for the bluff deck (Fig. 5, left). The reduced velocity range (𝑉𝑉𝑟𝑟 = 𝑡𝑡/𝑓𝑓𝐵𝐵; 𝑓𝑓=oscillation 
frequency) for the training signals is between 2 < 𝑉𝑉𝑟𝑟 < 16 and 2 < 𝑉𝑉𝑟𝑟 < 8 for the streamlined 
and bluff decks, respectively. The lift and moment GP models are trained separately, with the 
sample for the streamlined deck shown in Fig. 4 (bottom), and a sample for the moment coefficient 
for the bluff deck shown in Fig. 5 (left). The GP model fits the training signals well for the 
streamlined deck, but filters the violent vortex shedding from the CFD forces for the bluff deck. 
 

Figure 4. Streamlined Great Belt Deck: Training. Input angles (top); output sample moment and lift coefficients (top). 
 

 
Figure 5. H-shaped Bluff Deck: Training. Input angles (left); output sample moment coefficient (right).  



In the case of the streamlined deck, the trained GP model was used to predict the forces for large 
amplitudes (𝛼𝛼0 =15 deg) due to sinusoidal rotation. Fig. 6 (left) shows the moment coefficient and 
Fig. 6 (right) shows the corresponding Fourier spectrum. It can be seen that the GP model was able 
to accurately capture the forces, including the higher-order harmonics to a certain extent. 
 
The GP model is used for the bluff deck to predict the LCO and flutter speed. Since the flutter is 
mostly torsional for this type of decks, Figure 7 depicts the rotation of both GP and CFD models. 
It can be observed that the GP model successfully predicted both the critical flutter velocity and 
LCO amplitude. 

 

 
Figure 6. Streamlined Great Belt Deck: Harmonic Force Prediction. Moment coefficient (left); Spectrum (right).  

 

 
Figure 7. H-shaped Bluff Deck: Flutter Prediction. Rotational DOF: CFD (left); GP (right). 

 
4. CONCLUSION 
We introduced a data-driven GP model for modeling aerodynamic forces on bluff bodies. The 
model was employed to predict the nonlinear forces for two bridge decks, including LCO 
amplitudes and higher-order harmonics. Potential applications of the presented framework can be 
in the structural analysis during the design and monitoring of linear structures. 
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